

Overview

* Motivation for this presentation
* What EMET is and is not
* Breaking down EMET
- EMET Agent
- Mitigation engine
- Certificate trust crypto extension
- EMET UI

* QA

Motivation

"There (s nothing hidden under the sun” --
Old Greek proverb

Motivation

* This talk is technical
* Developers will enjoy it
Hackers alike ;)

* @Giving back to the community:

EMET is result of contribution from various talented individuals and
the security community

* EMET was never about security by obscurity

* Sharing will open the door to new ideas and mitigation
techniques

Help developers write EMET compatible code

What is EMET

* Stands for: Enhanced Mitigation Experience Toolkit

* Free utility that helps prevent vulnerabillities in
software from being successfully exploited

* Employs technology to counter common
exploitation techniques

* Works without exact knowledge of the exploit

What EMET is NOT

* It is not an Antivirus: Unlike antivirus, EMET does
not rely on signatures rather on the runtime
behavior of the program it protects

I

* Itis not a “Fool proof exploit mitigation solution'’
- It helps raise the cost of exploitation
- Cat and mouse game
- It is easier to destroy than to build

* Not good against logic bugs: bugs in APIs can
also lead to exploitation (without resorting
memory bugs)

* Responsible for handling:
- Tray icon notification
- Certificate trust rule validation
~ Event logging
- Telemetry

* User mode process (managed code):
~ Supersedes "EMET_notifier.exe” (< 4.0)
~ Runs with the privilege of the logged in user

~ Pluggable: plugins are internally known as
Subsystems

Overview

Written in C++ and some inline x86 assembly
* Compiled as EMET[64].dlI

Gets injected into processes via “Windows
Application Compatibility Infrastructure” aka Shim
Infrastructure”

- A shim database (*.sdb) is created by EMET's Ul to

define which processes should get EMET shim injected
into them

* Works intimately with “EMET Agent”
~ Uses mailslots for IPC

* http://technet.microsoft.com/en-us/library/dd837644(v=WS.10).aspx

http://technet.microsoft.com/en-us/library/dd837644(v=WS.10).aspx

* List of mitigations technologies:
DEP

Provided by the OS and configurable via EMET

EAF — Export Address Table Access filtering

Heapspray protection
- SEHOP

Provided by the OS (Vista+)
Configurable via EMET (>=Win7)

Mandatory ASLR

Provided by the OS (KB2639308)

Reserve NULL page

Provided by the OS (MS13-031)

..continued:
ROP mitigations
Stack Pivot
Simulate execution flow
Caller checks
- API behavior checks
Memory protection change
Loading DLLs from UNC path
Hardened protection
Deep hooks
- Anti detours
Banned APIs

* Data Execution Prevention: Prevents code
residing in non-executable (stack, data,
heap) memory pages from executing

* Once EMET gets injected into the process, it
calls the “ " API to turn

on/off DEP for the process.

.

Introduced in Windows Vista
Randomization of address space layout

Applications opt-in by linking executable files with
/DYNAMICBASE

EMET brings ASLR to:
Modules not built with /DYNAMICBASE

OnIy to dynamically loaded DLLs (i.e: delay import,
LoadLibrary), ...)

-~ Vista+

1. EMET intercepts calls to

- One code path is: kernel32!LoadLibrary() ->
ntdll'LdrLoadDII -> ... -> ntdll!NtMapViewOfSection

2. If the DLL was not compiled with /DYNAMICBASE && it
has a relocation table then:

- Un-map the section (reverting Step #1)

~ Reserve one page of memory at the preferred image
base address

- Re-map the section -> thus forcing the DLL to get the
DLL relocated by the OS (redo Step #1)

Introduced in Windows Vista SP1 (system wide only)

Verifies the “Exception Handler Chain Integrity”
before dispatching the SEH handlers

Applications can opt-in by setting the
“DisableExceptionChainValidation” Image File
Execution Option (IFEO) to zero in Windows 7+

- EMET will act as a Ul to toggle this IFEO option

8

EMET 4.0 brings SEHOP opt-in to all OS
versions prior to Windows 7

- EMET re-implements the same logic as
the OS for exception handler chain
iIntegrity checks

A vectored exception handler (VEH) is
registered so it checks the SEH chain

Integrity

* Not provided by the OS

* Aims to break heap spraying by reserving
memory pages at the most popular heap-
spray addresses:

- 0Ox0a0a0a0a;0x0b0b0b0b;0x0c0cOcOCc;0x0d0d
0d0d:0x09090909:0x14141414;

- This list can be configured from the registry

(per-process)
- _settings_\{app-guid;\heap_pages (REG_SZ)

Heapspray Allocation " EMETOff

Victim Process Attacker

£ 0101 10101 | 0101 | 0101 |
0101 /1 0101 11 0101 | 0101 |
10101 [0101 § 0101 [0101

| 0101 1 010
10101 010)

0101 1 0101

I'rustworthy. Computing

Heapspray Allocation @ EMETOn

Victim Process Attacker

0101 0101 0101
0101 0101 0101

0)111)0101
0101' 10101 |

Trustworthy Compiting

* Filters access to the Export Address Table (EAT):

~ Any access to the EAT must originate from a
loaded module => shell/JITted code will trigger
the filter

- For each thread, EMET adds two debug registers
to monitor any access to the EAT of kernel32.dlI
a nd I'Itd".d" // Protect EAT for kernel3Z and ntdll

eat hwbp add module ("kernel3Z.d11");
eat hwbp add module ("ntdll.dll™);

* This protection is effective against EMET-

agnostic shellcode - I

EAT Access Filtering (EAE)

I
- L——

* Drawbacks:
- Can be defeated with many tricks

- DRMed code is allergic to EAF

* Resolving APIs via parsing system
structures:

chellcode - 82548506 Xor edx, edx

Fhellcode 82540508 mov edx, fs:[edx+3Bh]; Get PEB

Fhellcode :B254085AC mov edx, [edx+8Ch]; Get PEB_LDR_DATA struct
Ehellcode B25405AF mov edx, [edx+14h]

Ehellcode 2 825485AF

Ehellcode 282548582

hellcode: 82540582 loc 25485B2:; CODE XREF: shellcode:8254862A)]

thellcode : 825408582 mov esi, [edx+28h]
Fhellcode : 825405B5 movzx ecx, word ptr [edx+26h]
chellcode : 8254085B9 2or edi, edi

Trustworthy Computing

-

Bottom-up Randomization

~ Reserve a random number of 64K regions via
VirtualAlloc()

- This will make future memory allocations less
predictable

- Provides entropy to images that have been
randomized via mandatory ASLR

- WIn8 natively supports this

ROP — Overview

* ROP mitigations are a result of the
BlueHat 2012 Prize

* EMET's ROP mitigations are based on lvan
Fratric's work™ (the 2"d prize winner)

* EMET implements four out of six
mitigations from lvan’s ROPGuard

* https://code.google.com/p/ropguard/

https://code.google.com/p/ropguard/

* The re-implementation emphasizes:
Speed: ROP checks should be as fast as possible

Code maintainability and portability: the code must
be easy to maintain and to port to other architecture
(if needed)

Compatibility: ROP checks should be compatible with
as much applications as possible

Reuse of existing supporting libraries: Use existing
and time proven APl hooking and disassembly engine

Note: EMET 4.0 implements ROP mitigations for 32-bit processes only

ROP — Terms and gen

Definition of “Critical functions”

~ They are functions that are important for the attacker

to call in order to set stage for a more elaborate
code execution

Some critical functions that are used via ROP:

Returning to VirtualProtect: make the stack area
executable

Returning to VirtualAlloc: allocate executable
memory

Returning to LoadLibrary: load a remote D
achieve code execution

-

ROP — Terms and gener

* There are around 50 APIs that EMET deems as
“critical functions”

Critical functions are hooked and redirected to a
common stub that does the extra validation
before letting the APIs resume execution

Simply put: only “proper use” of critical APIs will

be allowed

MSDIS is a disassembler library

It is used internally by
The debugger engine (dbgeng): Windbg, cdb, etc...
Visual Studio, etc...

Can disassemble code for various machine architectures
X86
AMD64
ARM, etc...

Robust and provides many functionalities needed by
EMET:
Disassembling
Code simulation

ROP — Supporting Librarie:

Detours™ is a Microsoft Research Project

* Robust and portable APl hooking and binary
instrumentation library, supporting:
- X86
- AMD64
- ARM, etc...

* However, Detours, as Is, is hot enough to support
EMET

* http://research.microsoft.com/en-us/projects/detours/

http://research.microsoft.com/en-us/projects/detours/

ROP — Supporting Libraries s Detours
-
J——

-

Detours has been modified to support:
Redirecting all functions to the same stub

To redirect all critical APIs to the same stub (Let us
call that stub: ROPCheck stub)

User callbacks for Pre/Post code generation
To generate custom code for each detoured API

// Setup the xDetours params
XxDetoursParams.PreCodeGen
xDetoursParams.PostCodeGen

// BAssociate the context structure

RopCheckCodeGenStruct RopCheckCodeGenVar = {0};
¥DetoursParams.Context = &RopCheckCodeGenvar; //

Trustworthy Computing

* User controlled “copied bytes” count
This helps achieve anti-trampoline bypasses
It is not fool proof

* Shellcode executing the prolog body in the shellcode then
jumping past the detour via “yjmp ApiAddr+5" will crash

Randomize the trampoline byte count

¥xDetoursParams.nCopyBytes = 1 + (rand() % 3):

ROP — A typical protected critical function

s
T——

* In this example, Is protected
Its original bytes are copied

A jump to the detoured function is put instead
5 bytes are consumed (0xE9 + sizeof(DWORD))

Note: anti-detours is applied (notice the OxCC filler)

kerneld?2.
kerneld?.
kerneld?2.
kerneld?.
kerneld?.
kerneld?2.
kerneld?2.
kernel3?.
kerneld?.
kerneld?.
kerneld?.
kerneld?.
kerneld?.

F7CAS A9
F7CAS 989
F7CAS A9
F7CASDAEY
F7CAS 989
F7CAS A9

; LPUDID _ stdcall VirtualfdllocEx{HAHDLE hProcess,
UVirtualfAllocEx proc near

jmp GuardedUirtualAllocEx

UirtualAllocEx endp

F7CA5989 ;

F7CAS9BE
F7CAS9AF
F7CAS98F
F7CAS98F
F7CAS9AF
F7CAS98F

UirtualAllocEx_after_copied_bytes:
: CODE XREF: GuardedVirtualAllocEx+2CTj
jmp o_kernelbase UirtualfdllocEx

Trustworthy Computing

ical function

ROP — A typical protected crit

PR

* This stub Is generated by the pre and post code gen
callbacks

* The protected function’s new detoured body (1/2):

; LPUDID stdcall GuardedVirtualAllocEx{HAHDLE hProcess, LPUDID lphAddre
GuardedVirtualAllocEx proc near; CODE XREF: j GuardedUirtualfAllocEx]j

hProcess= dword ptr 4
l1pAaddress= dword ptr &8

dwSize= dword ptr BCh
flallocationType= dword ptr 18h
f1Protect= dword ptr 14h

push BAADC2861h; Function ID = Encoded API Proc Addr
pusha; << Save all GP registers
pushf; << 3Save the flags

push esp; Save the stack pointer -> points to the registers array
call near ptr ROPCheck; DWORD WIHAPI RopCheck{PDWORD Registers)
popf; *> Pop the flags

popa; *> Pop GP regs

add esp, 4; >> POP func ID

Trustworthy Computing

ROP — A typical protected critical function

PR

* The protected function’s new detoured body (2/2):

// Start pushing original arguments
push dword ptr [eax+14h]

push dword ptr [eax+108h]

push dword ptr [eax+0Ch]

push duword ptr [eax+8]

push dword ptr [eax+4]

push offset after API call

// Copied bytes

mov edi, edi

push ebp

mov ebp, esp

pop ebp

jmp VirtualAllocEx_after_copied_bytes

db ©CCh ; ,; Special Marker

after API call:; DATA XREF: GuardedVirtualAllocEx+21To

push eax; << API return value

call near ptr ROPCheckEnd; Post ROP checks (restore LastError, .
retn 14h; stdcall, purge params and return

GuardedVirtualfAllocEx endp

Trustworthy Computing

E——

ROPCheck() will be called before resuming execution
In the original API

* In short, ROPCheck() does the following:

// This function 1s common to all detoured functions
DWORD WINAPI RopCheck (PDWORD Regilsters)
{
// Parse parameters
PDWORD pRSP (PDWORD) Registers[R X86 ESP];
PEYTE CalledhddressE (PBYTE) *pRSE;
PEYTE CalledAddress (PBYTE) DecodePointer (CalledAddressE) ;
PBYTE ReturnAddress (PBYTE) * (pRSP+1) ;
// Check banned APIs
// Check stack pointer
// Check the caller
// Simulate execution flow
Special checks on LoadLibrary family
Special checks on VirtualAlloc/VirtualProtect family
ANY VIOLATION -> Report and Terminate the program
// Otherwise: Resume API execution

|Ilr |Ilr

’ 7

|Ir |lr

Trustworthy Computing

ROP — The mitigati

* We covered all the background material
* Any questions so far?

* Let us now describe each ROP mitigation

* The attacker sometimes has control over
the heap data and not the stack

* A stack pivot” gadget is used to swap the
stack pointer with an attacker controlled

register (pointing to controlled data, usually
on the heap)

* The typical gadget (if EAX was under the

attacker’s control):
- XCHG EAX, ESP
- RET

Upon entering a critical function, EMET checks
if ESP is within the thread’s defined stack area
(in the TIB)

DWORD StackBottom, StackTop:
GetStackInfo (&StackBottom, &StackTop):

if (((DWORD PTR)pRSP < StackBottom) || ((DWORD PTR)pRSP >= StackTop))
ReportStackPivot(...);

Trustworthy Computing

ROP — Caller check

* EMET disassembles backwards from the return address
(and upwards) and verifies that TARGET is CALLed and not
RETurned or JMPed into

* Normal API call scenario:

PUSH argN
PUSH ...
PUSH arg

- TEST EAX, EAX ;: <- Return address
- JEloc_123

ROP — Caller check

ROP scenario (memory @ EAX is attacker controlled):

EAX -> memory contents

[address of VirtualAlloc, GADGET2_ADDRESS, arg1, ..., argN,
unused, OtherApiCall, GADGET3_ADDRESS, arg....]

After a bug is triggered and EIP is controlled, the starting gadget
could be a stack-pivot gadget:

XCHG EAX, ESP
<- returns to VirtualAlloc, then returns to Gadget 2

CF-To[o[=] 2
POP EBP
<- returns to OtherApiCall then returns to Gadget 3

ROP — Caller check

A critical function (1) is reached (in this case
VirtualAlloc)

~ The return address is captured

- The registers are captured and passed to
MSDIS

- All general purpose registers are required
to resolve indirect call target

- Heuristically disassemble backwards from the

return address until we could disassemble a
call

ROP — Caller check

- Compute the call target and see if it
leads back to the critical function (1)

- If no CALL instruction was found then
we probably have a ROP or JOP scenario

~ Notify the user and terminate the
process

ROP — Caller checks QI —

* Backward disassembly table

The order of the instruction length is based on the most frequent
“CALL opcode” sequence found in the majority of programs

This ordering increases the likelihood of finding a CALL in the first
iteration

fl
// Call OpCode check priority and instruction length

static const unsigned char CallOp32[] =

/ call [reg+disp32], call [loc32]
// call rel

f

}

call [reg+disp8]
call [regltregZ+disp32] and other calls

Trustworthy Computing

Checking if previous instruction is a call

statlic bool CheckPrewviousInstructionIfcall (
DIS *Dis,
PEYTE EReturnAddress,
PBYTE CallTarget,
PDWORD Registers)

bool ok = false;
// Bind the registers with this instance
Dis—->PvClientSet (
// Try to disassemble and see if it is a call instruction
for (size t i=0; i< countof(Callop32); i++)
{
PBYTE DisAsmBuf = Returnfddress - Callop32[il:
if (Dis—-»CbDisassemble ((DIS::ADDR)DisAsmBuf, DisAsmBuf,
continue;
DIs INSTRUCTION Instr;
DIS: :0PERAND COprl[Z2]:
if ('Dis->FDecode (&Instr, Opr, countof(Opr))
|| Instr.opa != DISXE86::opaCall)
continue;
ok = CheckCallTarget (
Dis,
&0pr[0],
CallTarget)
if (ok)
break;

X
I
return ok;

20)

Trustworthy Computing

=

-y
@)
e

=

(@
-
Irm
-
(@)
3.

It is not as simple as that!

The compiler legitimatel

MS0O.DLL: f?EUD?EJ 55

MS
MS
MS

5 8B EC

5D
FEF 25

OLEACC.d11'eE1EB2E1

OLEAC
OLEAC
OLEAC

OLEA(

111! 6E1EB2B2

.dl11!'6E1EB2B4

411 '6E1EBZBS
111! 6E1EBZ2BB

OLEACC.d11!6E1EEZC1
QLEACC.d11!'6EI1IEBZC?Z

push

mov

I:] O 1:]
24 1h+ Jmp

Caller

does some weird stuff:

ebp

ebp, esp

ebp

off €73RA1AZ4

; API addr

All those above (and more) are legitimate cases, we have to handle
them!

CallerCheck have to find the right balance:
Handle legitimate cases while blocking real ROP attempts
There is no perfect solution

J—

Trustworthy Computing

ROP — Simulate

EMET simulates execution forward from a
critical function call

* Simulate forward and follow the return
addresses
~ The first return address is given (on the stack)

- The subsequent return addresses are deduced
by simulating instructions that modify the
stack/frame pointer

* Each return address must be preceded b
a CALL instruction

ROP — Simulate Executi

-

In the case of chained ROP gadgets:

- After a critical function returns, it will be
followed by another gadget

- and not a CALL instruction (in most cases)

~ Each gadget will execute a few simple
Instructions and RETurn again to the

following gadget OR to another critical
API

ROP

-

Simulate Execution bl

—"'""'

ow
O A

Sample memory dump with
pointers to gadgets and parameters

values

B
]
]
]
]
]

Gdagl2cc

Trustworthy Computing

ROP — Simulate ExecutiongFlo

ol |

D=x00o0aoao, mill to avoid crashing

Oxbhbdbbbdh, urnsed

DxeladlZCC, writeahle memory to awvoild crashing
OxeDBFFRZ3, [2] returh to register load

s eDE@l1AC 83 C4 aC
eDEallArF C3

o+ 6D8FFe23 8B Do O edx,esi

OxAAAAARLA,
OxAAAAARLA,
OxAAAAARLA,
0x6DELEDDT,
OxARAAARAA
OxAAAAARLA,
OxAAAAARLA,
0x00002000,
Ox6DE0ZAGS,
Ox6DAGLECE,
0x6DA7EDOS,
OxARAAARRA,
OxARAAARAA
OxAAAAARLA,
Ox6D970AS0,
OwAAAAARLA,
OxAAAAARLA,
OxAAAAARLA,
Ox6DE0L1AC,
0x00000000,
0x00004000,
OxAAAAARLA,
Ox6DEZ4ACTC,
OwAAAAARLA,
OxAAAAARLA,
Ox6DE0S150,
Ox6DES5ALEL,
OxARAAARRA,
OxARAAARAA
0x00003000,
OxAAAAARLA,
Ox6D96FAZS,

[2.4) E3I, unused
[2.5) EBX, unused
[2.C) EEF, unused
i3]

wmzed

wmsed

wmsed

[3.4) EC, subtract from EDX to point to shellcoode

(4]

[4.4) EDI, address to zawve shellcode pointer

i3]

[5.4) EDI, unused
[5.E) E3I, unused
I5.C) EBEP, unused
&)

wmsed

wmzed

wmzed

7]

[B.4) null to alloc anywhere
[6.EB) alloc_szize
wmsed

=)

wmsed

wmzed

2]

(10]

wmzed

wmzed

menmove size (<= alloc_size - 1)

110,41 unused
[11) exec shellcode

6D8FFB23 5E

6D8FFB26 8B (3

6D8FFB28 5B
6D8FFB29 5D

6DEFFB2A C2 BC a8

esi
eax, ebhx
ebx
ebp
@Ch

6D81BDDT 59
6D81BDDE C3

cDE@2A88 5F

gDE@2Ase C3

) ED97ED@E 2B D1
6DI7EDAS 89 17
6DI7ED@A SF
6DI7ED@E SE
6DI7EDAC 5D
6DI7EDAD C2 BC 00

= 60978A58
GD978A51
GDA7BAS3
6D978A56
60978458

APl

eD978r68

55

8B EC

8B 45 aC
85 CB

edx, ecx

dword ptr [edi],edx
edi

esl

ebp

@Ch

ebp

ebp,esp

eax,dword ptr [ebp+8Ch]
£ax, eax

eD27BASE

n,éélll to VlrtEuaIAItdc() happe
Eﬁé§970A6A tfﬁus tmggermg EX

68 @@ 10 aa

Csimmgt;on

GDA7BAES

6OE7BABA

eDa7anvye
60978A72
60978A75
GDA7BATE

FF 15 B4 F@ 9E 6

83 Ce

@F 95 Ce
5D

C3

pu;-
push
mov
push
call
test
setne
pop
ret

ea
eah)d.c d ptr [ebpt+B8]
eax

dword ptr ds:[6DIEF@34h]
28X, 8ax

al

ebp

Trustworthy Computing

ROP - Simulate Execution Flow

0x00000000,
OxAAAAARLA,
Ox6DAGLECE,
Ox6DEFFE23,
OxAAAAARLA,
OxAAAAARLA,
OxAAAAARLA,
0x6DELEDDT,
OxARAAARAA
OxAAAAARLA,
OxAAAAARLA,
0x00002000,
Ox6DE0ZAGS,
Ox6DAGLECE,
0x6DA7EDOS,
OxARAAARRA,
OxARAAARAA
OxAAAAARLA,
Ox6D970AS0,
OwAAAAARLA,
OxAAAAARLA,
OxAAAAARLA,
Ox6DE0L1AC,
0x00000000,
0x00004000,
OxAAAAARLA,
Ox6DEZ4ACTC,
OwAAAAARLA,
OxAAAAARLA,
Ox6DE0S150,
Ox6DES5ALEL,
OxARAAARRA,
OxARAAARAA
0x00003000,
OxAAAAARLA,
Ox6D96FAZS,

mill to avoid crashing

urnsed

writeahle memory to awvoild crashing
[2] returh to register load
[2.4) E3I, unused

[2.5) EBX, unused

[2.C) EEF, unused

i3]

wised

urnsed

urnsed

[3.4) EC, subtract from EDX to point to shellcoode
(4]

[4.4) EDI, address to zawve shellcode pointer
i3]

[5.4) EDI, unused

[5.E) E3I, unused

I5.C) EBEP, unused

&)

unused

unsed

unised

7]

[B.4) null to alloc anywhere
[6.EB) alloc_szize

urnsed

=)

unused

unsed

2]

(10]

unsed

wised

menmove size (<= alloc_size - 1)
110,41 unused

[11) exec shellcode

eDEE11A7
ehaellAc
eDEa1l1AF

D¢ 6DB24C7C 8B
G6DB24C7E 8B
6DB24C81 83
G6DB24CE4 @3
6DB24C86 5D
6DB24CE7 (3

60883158 AL CC 12 As 6D
60888155 (2 @3 o6

o+ 6DB5A181
6DE5A182
BDBE5A1E3
6DB5A189
6DE5A1EC
B6DE5A1ED

4 6D96FAZ3

D4 F1 9E 6D
aC

6DE818E6
esp,@Ch

ecx, eax
eax,dword ptr [ecx+ldh]
esp,4

BaX, BCX

ebp

mov eax,dword ptr ds:[BDAG12(CH]
ret 8

eax
ecx

dword ptr ds:[6D2EF1D4h]
esp,ach

ebp

Trustworthy Computing

ROP - Simulate Execution Flow

JE—

* The number of simulated instructions can be

tweaked in the registry (default value is 15)
EMET_settings_\{app-guid\SimExecFlowCount = REG_DWORD

* Example of instruction simulation code:

// Simulate a few instructions
switch ((DISX86::0PRL)Instr.opa)
{

// LEAVE

a >t topaleave:

/ MOV ESP, EBP ; POP EBP

SlmLtll »StackPtr = simctrl->FramePtr; // ESP = EBP

// POP EBP

simctrl->FramePtr = * (PDWORD) simctrl->StackPtr;

simctrl->StackPtr += 4; // ESP += 4

simctrl->last push = false;

break;
.",."
// MOV
If f
case DISX86::opaMov:

if (Oprl[0].opcls == DIS::opclsRegister && Opr[0].regal == DISXB6::regaEsp

&& Opr[l]. oles == DIS::opclsRegister && Opr[l].regal == DISX86::regaEbp)

= simctrl->FramePtr;

::opaRet:
ointer

Simctrl—}Stacthr += 4 + (Instr.coperand == 0 ? 0 : (DWORD)Opr([0].dwl):;
return SIM RET;

Trustworthy Computing

ROP — API special chec

* There are two checks under this mitigation
LoadLibrary checks
- Stack area memory protection change check

Load library checks

* Hooks APIs that loads libraries
LoadLibrary(), LoadLibraryEx(), ...

Disallow loading of libraries from UNC path

Some ROP gadgets try to load a remote DLL from a WebDav
share

If the DLL loads, the attacker can execute code and elevate
privilege
This mitigation won't flag if a DLL:
Is loaded as resource
does not exist

This mitigation is not fool-proof
It works with EMET agnostic exploits

Memory protection change

.

This mitigation will trigger under the
following situations:

- A memory protection APl is called
VirtualProtect, VirtualProtectEx, ...

- ...and the target address belongs to the
thread’s stack area (defined in the TIB)

* EMET 4.0 introduces new protection against
known bypasses

Down-level API hooking

' Ant|‘ DetOu I'S (explained before)
Banned APIs

* EMET 4.0 improved the speed for ROP checks

TATY ‘a N NaY B! I N BN aFaEBEEEE
& n "

-

Down-level APl hooking
Not only kernel32!* critical functions are hooked

Now kernelbase!* and ntdll!'* are hooked too

* For instance, kernel32!VirtualAlloc code path is:
1. Kernel32!VirtualAlloc
2. Kernelbase!VitualAlloc
3. ntdll!NtAllocateVirtualMemory

* EMET will hook all three APIs but will only do
the ROP checks once depending on the code
path taken

ation Hardenin

* Banned API: EMET now has the ability to block
certain APIs

* As of EMET 4.0, ntdll!LdrHotPatchRoutine is
the only banned API

* When a banned API is called: the program will
terminate

ation Hardenin

peed improvement:

- Certain critical APIs will be quickly evaluated
during runtime to see if they are really critical or
not

- Critical function no longer deemed critical will

resume execution without spending time inside
RopCheck()

~ For example, VirtualAlloc is not critical if

the page protection parameter does not
have the PAGE_EXECUTE" bit

Mitigation Hardening

// OPTIMIZATION:

ed to do ROPChecks if a known "critical"™ function
ed in a safe manner

FuncParamValidator t FpV;
1f (FpV.Parse (CalledAddress, pRSP))
{
// Is this function used safely?
if (Fpv.IsSafe())
{
// Function parameters deemed safe, just skip the checks
return ...;

N Trustworthy Computing

Certificate trust crypto extemsion

-

The new certificate trust pinning feature is a two
part implementation:

Native: implemented as a CryptoExtension*

Managed code: implemented as a subsystem
hosted by “"EMET Agent”

The crypto extension will collect the certificates
in question from the context of the caller process

(example: Internet Explorer) and send them via
IPC to "EMET Agent”

* http://msdn.microsoft.com/en-us/library/windows/desktop/aa382405(v=vs.85).aspx

http://msdn.microsoft.com/en-us/library/windows/desktop/aa382405(v=vs.85).aspx

Certificate trust cr

.

The rule validation algorithm and description is
found in EMET's User Guide

* http://blogs.technet.com/b/srd/archive/2013/
05/08/emet-4-0-s-certificate-trust-
feature.aspx

* http://blogs.technet.com/b/srd/archive/2013/
04/18/introducing-emet-v4-beta.aspx

http://blogs.technet.com/b/srd/archive/2013/05/08/emet-4-0-s-certificate-trust-feature.aspx
http://blogs.technet.com/b/srd/archive/2013/04/18/introducing-emet-v4-beta.aspx

(-

EMET Ul is composed of two tools (managed code):

- Graphical user interface (EMET_GUI)
~ Text user interface (EMET _conf)

* The Ul must run elevated

It re-writes the SDB file to include the new
programs to be protected by EMET

- Manages EMET configuration
- General settings
- Cert trust settings
~ Etc...

S?

Questio

Download EMET from:
http://www.microsoft.com/emet

http://aka.ms/emet/

Please send comments to:
emet_feedback@microsoft.com ‘

Microsoft

© 2013 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.
The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market
conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation.
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

